經過幾百年的演繹與探討,Buffon 投針試驗逐漸演化為一種數值方法的前身:「蒙地卡羅方法」(Monte Carlo method),也就是透過利用亂數取樣 (random sampling) 模擬來解決數學問題。第二次世界大戰期間,Monte Carlo 方法被系統性地應用於科學研究中,誕生了 MANIAC (Mathematical Analyzer, Numerical Integrator and Computer),而 Stanislaw Ulam、John von Neumann、Nicholas Metropolis、Enrico Fermi 等人發展法一種基於樣本統計的方法,來解決關於在原子彈設計中,中子隨機擴散問題和 Schrodinger 等式的特徵值估計問題。該方法的原理最初是 Stanislaw Ulam 闡述的,後來由 John von Neumann 深入研究,於 1949 年發表一篇名為 "The Monte Carlo method" 的論文而聞名,當然,到了進入電腦時代,這個方法才得以由原本手動產生亂數來解決問題,變成實際性的數值方法。
Monte Carlo 方法是由 Nicholas Metropolis 所命名,取自其亂數機率有如賭博一般,而恰似北非最西側的摩洛哥首都 Monte Carlo,也就是知名賭城,種種奇豔動人的賭場生活寫照。所有具有隨機效應的過程,均可能以 Monte Carlo 方法大量模擬單一事件,並藉由統計上平均值,獲得某設定條件下實際最可能測量值,更廣泛來說,自然界裏的布朗運動、電波的噪音、基因的突變、交通即時路況等等,無處不含有隨機的變化,均有可適用的場合。
"投針試驗:當圓周率計算遇上機率論"
尚未有任何意見。 -