Applications Google
Menu principal

Post a Comment On: Backreaction

"Testing Quantum Foundations With Atomic Clocks"

19 Comments -

1 – 19 of 19
Blogger driod33 said...

I agree, being a distasteful idea is not a good criticism.
The many world's is a good explanation just as GR is better than Newtons. Neither are correct I hope.

8:37 AM, February 03, 2017

Blogger Sajid Ali said...

It can't be better than this. Thanks Sabine.

8:42 AM, February 03, 2017

Blogger Phillip Helbig said...

"It’s a neat idea. It strikes me as the kind of paper that comes about as spin-off when thinking about a problem."

And as something which not a run-of-the-mill physicist, but rather someone like Weinberg, would come up with.

8:51 AM, February 03, 2017

Blogger Phillip Helbig said...

"A little less talk, a little more action please."

Or a little less conversation. :-)

Just dig those groovy threads and cool dance moves!

8:54 AM, February 03, 2017

Blogger naivetheorist said...

bee: sorry for being off-topic but i would like to suggest that you reprint your recent Nautilus article on quantum gravity (http://nautil.us/issue/45/power/what-quantum-gravity-needs-is-more-experiments) here (if copyright permits) because it is excellent. As you point out in the article, theoretical physics needs to use the methodology known as abductive reasoning which utilizes a 'facts-before-theory' sequence (as opposed to a hypothetico-deductive sequence) to escape from the current deadend that quantum gravity theory finds itself in as a result of the mathematical masturbation methodology commonly being practiced by theoreticians in the field today.

10:00 AM, February 03, 2017

Blogger Alex Lumaghi said...

When you use the phrase "fundamental decoherence" is that bascially synonymous with the process described by "objective collapse theories" like that of Roger Penrose?

10:53 AM, February 03, 2017

Blogger Bert Morrien said...

Doctor Hossenfelder,

I understand that the fact that in a Ramsey clock no unexpected decoherence is observed is significant and that this needs an explanation.
Do you think the quantum envionment may be less noisy than quantum experiments suggest, so there may be some signal hidden in the seemingly random results of these experiments? If so, maybe these results can be analized by an AI, because these have proved to be remarkable good pattern recognizers.

12:24 PM, February 03, 2017

Blogger Uncle Al said...

Phys. Rev. Lett. 103(2) 023202 (2009)
https://www.uni-due.de/~hp0198/pubs/prl7.pdf
..."Hund’s Paradox and the Collisional Stabilization of Chiral Molecules"
http://www.thp.uni-koeln.de/natter/talks/Leipzig2013.pdf
..."Chiral Symmetry Breaking In Molecules And Solids"

One molecule in absolute vacuum (no collisional decoherence) has an arbitrary chiral configuration via the superposition principle. An alpha-amino acid with one acyclic chiral center might succumb.

Current Organic Chemistry 16(22) 2632 (2012), DOI: 10.2174/138527212804004508 An 11-carbon, rigid, point group D_3, pentacyclic hydrocarbon sits at the bottom of a deep thermodynamic well. It has eight homochiral centers - all at once or no structure. I empirically doubt it could be turned inside-out by a footnote. Look.

12:25 PM, February 03, 2017

Blogger Sabine Hossenfelder said...

naivetheorist,

Copyright does not permit, sorry.

12:39 PM, February 03, 2017

Blogger Sabine Hossenfelder said...

Alex,

Yes, but the paper does not specify a particular model. It works with any model whose decoherence can be brought into a particular form which (if you trust Weinberg) is any such process that is physically viable. Best,

B.

12:42 PM, February 03, 2017

Blogger Sabine Hossenfelder said...

Bert,

No, you have it backwards. If one would observe such an unexpected decoherence, that would require an explanation. I've never heard of a modification of quantum mechanics that becomes *less* noisy at some scale. Interesting thought. I'll have to think about whether that makes sense. Best,

B.

12:44 PM, February 03, 2017

Blogger Uncle Al said...

http://physics.aps.org/articles/v10/9
...A novel method for cooling trapped ions could boost the accuracy of atomic clocks.

Inertia against looking in new places is disappointing. Frivolity of publishing more theory is status quo. Euclid reigned for 2000 years because nobody had the big brass clangers to look at a globe...and report it. The solar system does not work using God's perfect circles. All the fun is in the footnotes.

9:05 PM, February 03, 2017

Blogger Unknown said...

Steven Weinberg does not grasp quantum mechanics, and I can prove that statement: read his (silly!) paper, "Precision test of Quantum Mechanics," PRL 62, 485 (1989), and then read Polchinski's demolition of that Weinberg's nonsense: PRL 66,397 (1991). QM is not mysterious: if observations have the character of numbers (and they do), and if simple symmetries are present in the universe (and they are, at least locally), then you get QM automatically: http://iopscience.iop.org/article/10.1088/1751-8113/41/17/175303/pdf;jsessionid=87D1A8EA95CB2085D82EAA3C51D496ED.c2.iopscience.cld.iop.org

7:05 AM, February 04, 2017

Blogger Steve Bryson said...

Speaking as a long-time fan of the many worlds interpretation, the criticism "rarely leads to progress" hits where it hurts. While "defining the problem away" is a bit too dismissive for my tastes, it seems to be true that very little actual progress has come from adapting the many worlds interpretation. Early on there were hopes for progress in understanding Born's law, but that didn't work out. In hindsight, saying "it's all there in the QM mathematical formalism" does not add much to the physical insight. Of course that doesn't mean it's wrong, but...

I wonder if a case can be made that Zurek et al discovered decoherence by thinking in terms of many worlds, but that is a much more indirect effect.

8:38 AM, February 04, 2017

Blogger Heinrich Päs said...

Hi Sabine,

I agree with Steve Bryson that "defining problems away" is an unfair description of the Many Worlds approach.
The Many Worlds interpretation does not "postulate" all possible measurement outcomes are equally real.
The Many Worlds interpretation uses the well-established formalism of quantum mechanics and this formalism
in its minimal version predicts these alternative measurement outcomes/Many Worlds/Everett branches.

Moreover I disagree, that it is puzzling that "on large scales our world is distinctly un-quantum".
While I agree that decoherence "takes place only if you consider the environment a source of noise whose exact behavior is unknown" it is absolutely clear why this is the situation we encounter: It is a consequence of our perspective onto the Universe which simply doesn't feed us all possible information about "combined system of the quantum state plus environment" aka as the entire Universe. I believe this perspectival element is the most interesting property of quantum mechanics and it is this phenomenon we should try to test: Is there a possibility to adopt a less local perspective onto the Universe? Nobody knows whether that's possible, but I would try to look into altered states of consciousness to explore this.
I wrote this idea up here:

Can the Many-Worlds-Interpretation be probed in Psychology?
Heinrich Päs
https://arxiv.org/abs/1609.04878
International Journal of Quantum Foundations, in the press

Even if it sounds crazy I believe this approach is more interesting and promising than Weinberg's idea.

Finally, also @Steve Bryson: Decoherence was discovered by H.D. Zeh in 1970, not by Zurek et al who started working on decoherence only in the 1980ies. I belive Zeh derserves more credit for this important discovery.

Cheers, Heinrich

12:36 PM, February 05, 2017

Blogger ppnl said...



I have always though that objective collapse theories were poorly motivated. It seems to be an attempt to restore some aspects of classical physics. Maybe it could be made to work but I see no reason to think so.

Without some form of objective collapse we are stuck with the irreducibly subjective nature of wave collapse. But what is the problem with that? Qm describes what an observer will see and sure enough when an observer looks that is exactly what they see. What more do you want?

And without objective collapse there can be no difference between wave collapse and decoherence. They are just two different perspectives on the same thing. I don't think the quantum measurement problem is a problem at all. It is just our classical minds struggling with quantum weirdness.

While many worlds may be a way to visualize things I'm not sure what it means to insist on the reality of other branches of the universe that you can never go to. What does real even mean in this context?

1:38 AM, February 06, 2017

Blogger naivetheorist said...

bee:

FYI: what you are suggesting here (and in your excellent article in Nautilus (http://nautil.us/issue/45/power/what-quantum-gravity-needs-is-more-experiments) is known in philosophy of science as abductive reasoning, the development of theories/models based on experimental findings, in contrast to the hypothetico-deductive method of Popper which does does not offer any basis for the creation of a theory/model. Abductive reasoning is the predominant methodology of theoretical physics with few successful exemptions (there can be debate as to whether Einstein was employing abductive reasoning via his use of 'thought experiments').

best regards,

richard

4:40 AM, February 06, 2017

Blogger MarkusM said...

There is another Nobel Prize winner, who has problems with the conventional view on QM:
-> Watch here <-

8:15 AM, February 07, 2017

Blogger Sabine Hossenfelder said...

akidbelle,

Looked at it, couldn't make sense of it. Doesn't look like it's worth more time. Modifying gravity is hard, really hard, and the paper is below the current quality standard.

11:46 AM, February 07, 2017

You can use some HTML tags, such as <b>, <i>, <a>

Comment moderation has been enabled. All comments must be approved by the blog author.

You will be asked to sign in after submitting your comment.
OpenID LiveJournal WordPress TypePad AOL